Indexed by:
Abstract:
In this paper, we propose a novel compressive sensing depth video (CSDV) coding scheme based on Gaussian mixture models (GMM) and object edges. We first compress several depth videos to get CSDV frames in the temporal direction. A whole CSDV frame is divided into a set of non-overlap patches in which object edges is detected by Canny operator to reduce the computational complexity of quantization. Then, we allocate variable bits for different patches based on the percentages of non-zero pixels in every patch. The GMM is used to model the CSDV frame patches and design product vector quantizers to quantize CSDV frames. The experimental results show that our compression scheme achieves a significant Bjontegaard Delta (BD)-PSNR improvement about 2–10 dB when compared to the standard video coding schemes, e.g. Uniform Scalar Quantization-Differential Pulse Code Modulation (USQ-DPCM) and H.265/HEVC. © Springer International Publishing AG, part of Springer Nature 2018.
Keyword:
Reprint Author's Address:
Email:
Source :
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN: 0302-9743
Year: 2018
Publish Date: 2018
Volume: 10735
Page: 96-104
Language: English
0 . 4 0 2
JCR@2005
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: