Indexed by:
Abstract:
Compared with other existing video coding standards, H.264/AVC can achieve a significant improvement in compression performances. A robust criterion named the rate distortion optimization (RDO) is employed to select the optimal coding modes and motion vectors for each macroblock (MB), which achieves a high compression ratio while leading to a great increase in the complexity and computational load unfortunately. In this paper, a fast mode decision algorithm for H.264/AVC intra prediction based on integer transform and adaptive threshold is proposed. Before the intra prediction, integer transform operations on the original image are executed to find the directions of local textures. According to this direction, only a small part of the possible intra prediction modes are tested for RDO calculation at the first step. If the minimum mean absolute error (MMAE) of the reconstructed block corresponding to the best mode is smaller than an adaptive threshold which depends on the quantization parameter (QP), the RDO calculation is terminated. Otherwise, more possible modes need to be tested. The adaptive threshold aims to balance the compression performance and the computational load. Simulation results with various video sequences show that the fast mode decision algorithm proposed in this paper can accelerate the encoding speed significantly only with negligible PSNR loss or bit rate increment. © 2007 Springer-Verlag London Limited.
Keyword:
Reprint Author's Address:
Email:
Source :
Signal, Image and Video Processing
ISSN: 1863-1703
Year: 2007
Issue: 1
Volume: 1
Page: 11-27
2 . 1 5 7
JCR@2020
ESI Discipline: ENGINEERING;
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 15
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: