Indexed by:
Abstract:
提出了一种改进的多神经网络集成自适应Boosting回归算法.算法中采用相对误差模型代替绝对误差模型,可以更接近于回归预测问题的要求,并在Boosting迭代过程中,在对训练集采样得到新的训练子集的同时,也对校验集采样得到新的校验子集,保证了两者的一致性.进而采用美国加州电力市场的实际数据,建立了由多个神经网络集成的电力系统短期负荷预测模型.预测结果表明,与传统的单网络预测模型相比,Boosting集成预测模型能显著提高模型输出的稳定性,增强网络结构及模型选择的可靠性,获得更高的预测精度.
Keyword:
Reprint Author's Address:
Email:
Source :
西安交通大学学报
ISSN: 0253-987X
Year: 2004
Issue: 10
Page: 1026-1030
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count: -1
30 Days PV: 3