Indexed by:
Abstract:
为协调决策支持和分类,引入了一种新的方法,该方法将粗糙集理论和神经网络有机地结合在一起,提出了一种基于粗糙集理论的神经网络模型构造方法.首先,利用粗糙集理论智能数据分析的能力,对神经网络进行预处理,抽取关键成分作为神经网络的输入,从而确定粗糙神经网络的初始拓扑结构.在此基础上,进一步研究和分析了该模型的实现步骤,并应用原始数据对网络进行训练,最后将该模型应用于分类规则的抽取.试验结果比较表明,该模型可以有效地提高分类的精度.
Keyword:
Reprint Author's Address:
Email:
Source :
控制与决策
ISSN: 1001-0920
Year: 2005
Issue: 7
Page: 782-785
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: