• Complex
  • Title
  • Author
  • Keyword
  • Abstract
  • Scholars
Search

Author:

Jiang, Nan (Jiang, Nan.) | Zhao, Yonghe (Zhao, Yonghe.) | Shang, Kefeng (Shang, Kefeng.) | Lu, Na (Lu, Na.) | Li, Jie (Li, Jie.) | Wu, Yan (Wu, Yan.)

Indexed by:

EI PubMed SCIE Download Full text

Abstract:

In the present work, a pulse-modulated high-frequency (HF) dielectric barrier discharge (DBD) plasma has been employed and utilized to evaluate the feasibility of toluene degradation in a multistage rod-type reactor at room temperature. Experimental result indicates that the energy consumption is significantly reduced and heating effect can be effectively suppressed when the DBD plasma is ignited in pulse-modulated mode instead of continuous mode. The response surface methodology (RSM) based on central composite design (CCD) model has been proposed to evaluate the contribution of key operating parameters including duty cycle and modulation frequency. The proposed model offers a good fit for actal data. The contribution of the modulation frequency is observed to be more dominant compared to the duty cycle for both the degradation efficiency and the energy yield. According to the results provided by the proposed model, the toluene degradation efficiency of 62.9 % and the energy yield of 0.90 g/kWh are obtained under the optimal conditions of 400 Hz modulation frequency and 56 % duty cycle. The effect of initial toluene concentration and gas flow rate have also been investigated. Increasing toluene initial concentration and gas flow rate are found to be unfavorable for the degradation of toluene, however, which are of benefit to the energy yield. A long-time experiment to assess the stability of pulse-modulated DBD has been successful performed. The possible pathways in plasma degradation of toluene is proposed based on the intermediates identification using GC–MS and FTIR. © 2020 Elsevier B.V.

Keyword:

Biodegradation Degradation Dielectric devices Dielectric materials Electric discharges Energy utilization Flow control Flow of gases Frequency modulation Surface properties Toluene

Author Community:

  • [ 1 ] [Jiang, Nan]Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People's Republic of China, Dalian; 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian; 116024, China; State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an; 710049, China
  • [ 2 ] [Zhao, Yonghe]Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People's Republic of China, Dalian; 116024, China; School of Environmental Science & Technology, Dalian University of Technology, Dalian; 116024, China
  • [ 3 ] [Shang, Kefeng]Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People's Republic of China, Dalian; 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian; 116024, China
  • [ 4 ] [Lu, Na]Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People's Republic of China, Dalian; 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian; 116024, China
  • [ 5 ] [Li, Jie]Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People's Republic of China, Dalian; 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian; 116024, China
  • [ 6 ] [Wu, Yan]Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People's Republic of China, Dalian; 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian; 116024, China

Reprint Author's Address:

  • [Jiang, Nan]Minist Educ Peoples Republ China, Key Lab Ind Ecol & Environm Engn, Dalian 116024, Peoples R China;;

Show more details

Related Keywords:

Source :

Journal of Hazardous Materials

ISSN: 0304-3894

Year: 2020

Volume: 393

1 0 . 5 8 8

JCR@2020

1 0 . 5 8 8

JCR@2020

ESI Discipline: ENGINEERING;

ESI HC Threshold:59

JCR Journal Grade:2

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 26

SCOPUS Cited Count: 81

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

FAQ| About| Online/Total:300/199652791
Address:XI'AN JIAOTONG UNIVERSITY LIBRARY(No.28, Xianning West Road, Xi'an, Shaanxi Post Code:710049) Contact Us:029-82667865
Copyright:XI'AN JIAOTONG UNIVERSITY LIBRARY Technical Support:Beijing Aegean Software Co., Ltd.