Indexed by:
Abstract:
The purpose of this research was to clarify wear-related interactions between the M2B phase and the metallic matrix in an Fe-3.0 wt % B duplex alloy, and to characterize those effects on two-body abrasive wear by establishing a mathematical model. Furthermore, the effects of 1.0–2.5 wt % Cr additions on the two-body abrasive wear of the alloy against silica sand paper are discussed in detail. Results of this investigation show that matrix/second phase microstructural interactions significantly decrease the wear of Fe-3.0 wt % B alloy. By comparison, M2B plays a predominant role in improving the alloy's wear interaction, while the metallic matrix is detrimental to it. The trend resulting from chromium additions is analogous to the effects of the fracture toughness of M2B, and chromium additions also contribute to wear resistance. Improving the fracture toughness of M2B not only decreases the wear directly but it also enhances the matrix/second phase wear interactions, which in turn improve the wear resistance of Fe-3.0 wt % B duplex alloy. © 2019 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Wear
ISSN: 0043-1648
Year: 2019
Volume: 436
4 . 1 0 8
JCR@2019
3 . 8 9 2
JCR@2020
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:131
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 21