Indexed by:
Abstract:
Unsteady mixed convective heat transfer flow past an inclined square cylinder is numerically investigated using a local multi-quadric radial basis function (MQRBF) interpolation. The blockage parameter (ratio of square cylinder length d to height of the computational domain H) varies from 0.025 to 0.2. Air is considered as the working fluid and Prandtl number is fixed at 0.71. Richardson number generally affects the heat transfer efficiency ranging from 0 to 20. Inclined angle of square cylinder ranges from 0° to 45°.The inlet flow is assumed to be laminar and uniform. At the outlet of the computational domain, a convective boundary condition is compared with a traditional Neumann condition. A study of the shape parameter of MQRBF which is sensitive to the distribution of inhomogeneous supporting nodes is provided. The representative streamlines, vortex structures and isotherm patterns are presented and discussed. In addition, the overall lift and drag coefficients, average Nusselt number and Strouhal number for unsteady flow are analyzed for various Reynolds number and Richardson number. Copyright © 2019 ASME.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2019
Volume: 2
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 14