Indexed by:
Abstract:
The interaction between the fluid and particles is the key to obtain accurate flow and heat transfer rules. For a reactive particle, the Stefan flow will affect the mass, momentum, and energy transfer between the particle and the fluid. The Stefan flow on the coal particle surface cannot be neglected in supercritical water gasification technology. In this paper, the influence of different Stefan flow intensities on the drag coefficient (Cd) and the Nusselt number (Nu) of supercritical water (SCW) cross flowing around a fixed spherical particle with Re in the range of 10-200 is studied; at the same time, the velocity and temperature boundary layers and the flow field around the particle are analyzed. For the influence of the dramatic change of the thermophysical properties of SCW near the pseudo-critical point, simple analysis of the drag coefficient and heat transfer of the particle with Stefan flow is conducted. The results show that with the increase in Stefan flow intensity, Cd and Nu decrease and the thickness of velocity and temperature boundary layers increases. A model of the particle with Stefan flow is constructed, and the Cd and Nu correlation formulas of the particle with Stefan flow are obtained. © 2021 Author(s).
Keyword:
Reprint Author's Address:
Email:
Source :
Physics of Fluids
ISSN: 1070-6631
Year: 2021
Issue: 2
Volume: 33
3 . 5 2 1
JCR@2020
ESI Discipline: PHYSICS;
ESI HC Threshold:26
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 26
SCOPUS Cited Count: 62
ESI Highly Cited Papers on the List: 8 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: