• Complex
  • Title
  • Author
  • Keyword
  • Abstract
  • Scholars
Search

Author:

Xiao, Junjie (Xiao, Junjie.) | Jia, Yaoqin (Jia, Yaoqin.) | Jia, Biao (Jia, Biao.) | Li, Zhifan (Li, Zhifan.) | Pan, Yujian (Pan, Yujian.) | Wang, Yunpeng (Wang, Yunpeng.)

Indexed by:

Abstract:

The adoption of the droop control provides a feasible scheme for the distributed generation connected to the utility grid. Nevertheless, it does not contribute to the inertia and damping factor necessary for power systems. In order to achieve increased stability of microgrids, some scholars simulate the operating characteristics of traditional synchronous generators through control equations, thus virtual synchronous generator control (VSG) was developed. Firstly, the small signal models of inverter based on droop control and VSG control are built in grid-connected (GC) state and stand-alone (SA) state to compare the dynamic response when load transition and power reference change. And we can deduce that in terms of dynamic response neither of these two control strategies can simultaneously satisfy the stringent requirements of different modes of operation. Then, by integrating the advantages of the traditional droop control and VSG control, inertial droop control is introduced in this paper. The presented inertial droop control not only features virtual inertia but also adds compensators to the output power part of the active power control loop to ensure the dynamic response of the system. In the GC state, inertial droop control helps to restrain power oscillations, shorten power adjustment time, and minimize frequency fluctuations to maintain frequency stability. In the SA state, the inertial droop control enables to achieve high enough inertia and damping properties. Finally, this paper demonstrates the superiority of the inertial droop control by means of simulation results. © 2020 The Author(s)

Keyword:

Control systems Damping Distributed power generation Dynamic response Electric inverters Electric machine control Electric power system control Microgrids Power control Synchronous generators

Author Community:

  • [ 1 ] [Xiao, Junjie]School of Electrical Engineering Xi'an Jiao tong University, Xi'an; 710049, China
  • [ 2 ] [Jia, Yaoqin]School of Electrical Engineering Xi'an Jiao tong University, Xi'an; 710049, China
  • [ 3 ] [Jia, Biao]School of Electrical Engineering Xi'an Jiao tong University, Xi'an; 710049, China
  • [ 4 ] [Li, Zhifan]School of Electrical Engineering Xi'an Jiao tong University, Xi'an; 710049, China
  • [ 5 ] [Pan, Yujian]School of Electrical Engineering Xi'an Jiao tong University, Xi'an; 710049, China
  • [ 6 ] [Wang, Yunpeng]School of Electrical Engineering Xi'an Jiao tong University, Xi'an; 710049, China

Reprint Author's Address:

  • [Xiao, Junjie]School of Electrical Engineering Xi'an Jiao tong University, Xi'an; 710049, China;;

Show more details

Related Keywords:

Related Article:

Source :

Energy Reports

Year: 2020

Volume: 6

Page: 104-112

6 . 8 7

JCR@2020

6 . 8 7 0

JCR@2020

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 25

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

FAQ| About| Online/Total:491/199583307
Address:XI'AN JIAOTONG UNIVERSITY LIBRARY(No.28, Xianning West Road, Xi'an, Shaanxi Post Code:710049) Contact Us:029-82667865
Copyright:XI'AN JIAOTONG UNIVERSITY LIBRARY Technical Support:Beijing Aegean Software Co., Ltd.