• Complex
  • Title
  • Author
  • Keyword
  • Abstract
  • Scholars
Search

Author:

Wang, Xiaofei (Wang, Xiaofei.) | Sun, Quan (Sun, Quan.) | Kou, Xiao (Kou, Xiao.) | Ma, Wentao (Ma, Wentao.) | Zhang, Hong (Zhang, Hong.) | Liu, Rui (Liu, Rui.)

Indexed by:

EI SCIE Scopus Engineering Village

Abstract:

The state of charge (SOC) plays a crucial role in battery management system, which directly reflects the usage of the battery. Recently the extreme learning machine (ELM) model as a data-driven method has been utilized to estimate SOC due to its simple single hidden layer structure and fast learning performance. The battery management system, however, may usually work in complex working conditions, which means that the non-Gaussian complex noise (or outliers) interference problem may exist in some measurement data for model training. So the performance of the classical ELM with mean square error (MSE) criterion may be degraded under this case. This work considers Non-Gaussian noise interference issue, the MSE in ELM is substituted by mixture generalized maximum correntropy criterion (MGMCC), and a novel robust ELM model is developed to improve the SOC estimation capability which mainly relies on the stable and robust nonlinear similarity characteristics of the MGMCC. A data set from a Panasonic 18,650 battery cell is used to verify the robustness of the proposed model, the experiment results demonstrate that it can achieve better estimation performance in terms of different evaluation metrics compared with the traditional methods. © 2021 Elsevier Ltd

Keyword:

Battery management systems Charging (batteries) Gaussian distribution Gaussian noise (electronic) Information management Knowledge acquisition Lithium-ion batteries Machine learning Mean square error Mixtures

Author Community:

  • [ 1 ] [Wang, Xiaofei]School of Micoelectronics, Xi'an Jiaotong University, Xi'an; 710049, China
  • [ 2 ] [Sun, Quan]School of Micoelectronics, Xi'an Jiaotong University, Xi'an; 710049, China
  • [ 3 ] [Kou, Xiao]School of Electrical and Engineering, Xi'an University of Technology, Xi'an; 710048, China
  • [ 4 ] [Ma, Wentao]School of Electrical and Engineering, Xi'an University of Technology, Xi'an; 710048, China
  • [ 5 ] [Zhang, Hong]School of Micoelectronics, Xi'an Jiaotong University, Xi'an; 710049, China
  • [ 6 ] [Liu, Rui]Beijing Smart-Chip Microelectronics Technology Company, Ltd., Beijing; 100192, China

Reprint Author's Address:

  • W. Ma;;School of Electrical and Engineering, Xi'an University of Technology, Xi'an, 710048, China;;email: mawt@xaut.edu.cn;;

Email:

Show more details

Related Keywords:

Related Article:

Source :

Energy

ISSN: 0360-5442

Year: 2021

Volume: 239

7 . 1 4 7

JCR@2020

ESI Discipline: ENGINEERING;

ESI HC Threshold:30

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 28

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

FAQ| About| Online/Total:793/199624741
Address:XI'AN JIAOTONG UNIVERSITY LIBRARY(No.28, Xianning West Road, Xi'an, Shaanxi Post Code:710049) Contact Us:029-82667865
Copyright:XI'AN JIAOTONG UNIVERSITY LIBRARY Technical Support:Beijing Aegean Software Co., Ltd.