Indexed by:
Abstract:
Ammonia is an important industrial raw material. To promote the production of ammonia, it is urgent to develop efficient catalysts for nitrogen reduction reactions (NRR). Here, we have reported a novel electrocatalyst: γ-graphyne-like BN sheet-supported single metal atom (M/γBN, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Ru) for NRR and studied the effect of Hubbard U correction in single-atom catalysts. The results of adsorption show that Ti/γBN, V/γBN, and Ru/γBN have the best adsorption energy for nitrogen. A detailed analysis of the NRR mechanism indicates that V/γBN has the lowest energy barrier in the rate-determining step when it follows a distal mechanism. Further analysis shows that the superior catalytic performance in V/γBN sheet is mainly attributed to the electron donation and back-donation mechanism. More interestingly, V/γBN greatly inhibited HER selectivity. By analyzing the doping structure and adsorption system, it can be found that when considering Hubbard U correction, there will be an obvious correlation between energy and distance. This study not only provides a basis for understanding the mechanism of nitrogen reduction reaction catalyzed by single-atom catalysts but also provides a new design idea for the rational design of high-efficiency NRR catalysts. © 2022 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Alloys and Compounds
ISSN: 0925-8388
Year: 2022
Volume: 908
5 . 3 1 6
JCR@2020
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:7
Cited Count:
SCOPUS Cited Count: 19
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: