Indexed by:
Abstract:
Pinning-controlled Sm2(Co, M)17 (M = Fe, Cu, and Zr) magnets with cellular nanostructures are the strongest high-temperature permanent magnets. The squareness factor of such magnets is smaller than those of nucleation-controlled permanent magnets, leading to a lower-than-ideal maximum energy product. One of the main reasons for this poor squareness is that the pinning strength is weaker at cell edges than at 1:5H cell boundaries. However, the structure of these edges remains a topic of debate. To identify the microstructure of cell edges, electron diffraction, TEM bright/dark field imaging, and HRTEM imaging on a model magnet Sm25Co50.2Fe16.2Cu5.6Zr3.0 (mass fraction, %) were performed using both [100]2:17R and [101]2:17R zone axes. The results revealed a rhombohedral 2:17R' phase at some of the edges, with one faulting basal layer in the 2:17R lattice. Further comparative investigations revealed that all the extra superlattice reflections result from the 2:17R' phase, excluding the previously identified 2:17H or Smn + 1Co5n - 1 or their mixture that can only produce a part of such superlattice reflections. Owing to the 2:17R' phase with a faulted basal plane, the free energy at the cell edges is higher than that of the 2:17R cell interiors, leading to repulsive domain-wall-pinning unfavorable for the squareness factor. This study provides important evidence for understanding the microstructural origin of the poor squareness factor obtained for Sm2(Co, M)17 permanent magnets. © 2021, Science Press. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Acta Metallurgica Sinica
ISSN: 0412-1961
Year: 2021
Issue: 12
Volume: 57
Page: 1637-1644
1 . 2 5 1
JCR@2020
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:36
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 14
Affiliated Colleges: