Indexed by:
Abstract:
In the liquid hydrogen storage and delivery, cavitation and boiling bubbles are prone to occur, which reduces the safety and economy of the liquid hydrogen delivery. For the bubble in liquid hydrogen, its growth process is different from that of room temperature media owing to the thermodynamic properties. In this paper, a single bubble growth model in liquid hydrogen is developed considering temperature distribution inside the bubble. The growth of single bubble in liquid hydrogen is described and predicted by solving Rayleigh-Plesset equation, thermal diffusion equation, thermal equilibrium equation, and heat conduction equation in semi-infinite space simultaneously. The growth trend of bubble radius, radius growth rate, vapor pressure, thermal boundary layer thickness and temperature difference between boundary and center are investigated by the model. The influence of superheat and ambient pressure on the growth of single bubble in liquid hydrogen is investigated by analysis of variance (ANOVA) and range analysis method. The mechanism of the single bubble transform from dynamic growth to thermal growth is clarified by comparing the critical time of the above physical indicators. © 2022 Hydrogen Energy Publications LLC
Keyword:
Reprint Author's Address:
Email:
Source :
International Journal of Hydrogen Energy
ISSN: 0360-3199
Year: 2022
Issue: 58
Volume: 47
Page: 24406-24420
5 . 8 1 6
JCR@2020
ESI Discipline: ENGINEERING;
ESI HC Threshold:7
Cited Count:
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: