Indexed by:
Abstract:
In this paper, we present a numerical method for the phase-field model of anisotropic ice crystal growth on a spherical surface. The mathematical model includes terms related to the anisotropic interfacial energy, which is defined by the interface angle with respect to a reference angle. One of the natural numerical methods on curved surfaces is a computational technique based on a triangular mesh for the surface in a three-dimensional space. However, it is difficult to compute terms with the interface angle on a triangular mesh. To resolve this problem, we solve the governing equation in Cartesian coordinates after rotating each vertex and the 1-ring neighborhood of the vertex on the triangular mesh. After rotation and interpolation, we numerically solve the phase-field model using a standard finite difference method. We present the results of several tests to demonstrate that the proposed algorithm can recover anisotropic ice crystal growth on a spherical surface. © 2022 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Computers and Mathematics with Applications
ISSN: 0898-1221
Year: 2022
Volume: 125
Page: 25-33
3 . 4 7 6
JCR@2020
ESI Discipline: MATHEMATICS;
ESI HC Threshold:4
Cited Count:
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: