Indexed by:
Abstract:
A dynamically weighted directed network (DWDN) is frequently encountered in various big data-related applications like a terminal interaction pattern analysis system (TIPAS) concerned in this study. It consists of large-scale dynamic interactions among numerous nodes. As the involved nodes increase drastically, it becomes impossible to observe their full interactions at each time slot, making a resultant DWDN High Dimensional and Incomplete (HDI). An HDI DWDN, in spite of its incompleteness, contains rich knowledge regarding involved nodes' various behavior patterns. To extract such knowledge from an HDI DWDN, this paper proposes a novel Alternating direction method of multipliers (ADMM)-based Nonnegative Latent-factorization of Tensors (ANLT) model. It adopts three-fold ideas: a) building a data density-oriented augmented Lagrangian function for efficiently handling an HDI tensor's incompleteness and nonnegativity; b) splitting the optimization task in each iteration into an elaborately designed subtask series where each one is solved based on the previously solved ones following the ADMM principle to achieve fast convergence; and c) theoretically proving that its convergence is guaranteed with its efficient learning scheme. Experimental results on six DWDNs from real applications demonstrate that the proposed ANLT outperforms state-of-the-art models significantly in both computational efficiency and prediction accuracy for missing links of an HDI DWDN. Hence, this study proposes a novel and efficient approach to large-scale DWDN representation.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN: 0162-8828
Year: 2022
Issue: 12
Volume: 44
Page: 9756-9773
1 6 . 3 8 9
JCR@2020
ESI Discipline: ENGINEERING;
ESI HC Threshold:7
Cited Count:
SCOPUS Cited Count: 127
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: