• Complex
  • Title
  • Author
  • Keyword
  • Abstract
  • Scholars
Search

Author:

He, YN (He, YN.)

Indexed by:

SCIE Scopus EI

Abstract:

A fully discrete two-level finite element method (the two-level method) is presented for solving the two-dimensional time-dependent Navier-Stokes problem. The method requires a Crank-Nicolson extrapolation solution (u(H,tau0), p(H,tau0)) on a spatial-time coarse grid J(H,tau0) and a backward Euler solution (u(h,tau), p(h,tau)) on a space-time fine grid J(h,tau). The error estimates of optimal order of the discrete solution for the two-level method are derived. Compared with the standard Crank-Nicolson extrapolation method (the one-level method) based on a space-time fine grid J(h,tau), the two-level method is of the error estimates of the same order as the one-level method in the H-1-norm for velocity and the L-2-norm for pressure. However, the two-level method involves much less work than the one-level method.

Keyword:

Crank-Nicolson extrapolation mixed finite element Navier-Stokes equations two-level method

Author Community:

  • [ 1 ] Xian Jiaotong Univ, Fac Sci, Xian 710049, Peoples R China

Reprint Author's Address:

  • Xian Jiaotong Univ, Fac Sci, Xian 710049, Peoples R China.

Email:

Show more details

Related Keywords:

Source :

SIAM JOURNAL ON NUMERICAL ANALYSIS

ISSN: 0036-1429

Year: 2003

Issue: 4

Volume: 41

Page: 1263-1285

1 . 0 7 6

JCR@2003

3 . 2 1 2

JCR@2020

ESI Discipline: MATHEMATICS;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 206

SCOPUS Cited Count: 234

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

FAQ| About| Online/Total:772/199562833
Address:XI'AN JIAOTONG UNIVERSITY LIBRARY(No.28, Xianning West Road, Xi'an, Shaanxi Post Code:710049) Contact Us:029-82667865
Copyright:XI'AN JIAOTONG UNIVERSITY LIBRARY Technical Support:Beijing Aegean Software Co., Ltd.