• Complex
  • Title
  • Author
  • Keyword
  • Abstract
  • Scholars
Search
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:娄晓杰

Refining:

Indexed by

Submit Unfold

Source

Submit Unfold

Co-Author

Submit Unfold

Language

Submit

Clean All

Export Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 15 >
High energy density hybrid supercapacitors derived from novel Ni3Se2nanowires: In situ constructed on porous nickel foam EI SCIE
期刊论文 | 2021 , 8 (4) , 1093-1101 | Inorganic Chemistry Frontiers
WoS CC Cited Count: 1
Abstract&Keyword Cite

Abstract :

In this work, novel Ni3Se2 nanowires are synthesized in situ on the surface of nickel foam (Ni3Se2 NWs@NF) through a one-step hydrothermal reaction under different reaction times, and they demonstrate excellent energy storage performance for hybrid supercapacitors (HSCs). Owing to their good electron transfer capability and porous and hierarchical architecture, the as-prepared Ni3Se2 NWs@NF shows a high capacity of 2.6 C cm-2 at 5 mA cm-2 in a three-electrode cell. Even if the current density increases up to 250 mA cm-2, its specific capacity still remains at 0.93 C cm-2, exhibiting excellent rate capability. Furthermore, an HSC was assembled with the as-prepared Ni3Se2 NWs@NF as the positive electrode and activated carbon (AC) as the negative electrode, in 2 M KOH aqueous electrolyte. The Ni3Se2 NWs@NF//AC HSC demonstrates a high energy density of 64.4 W h kg-1 at a power density of 446.8 W kg-1 at 0.43 A g-1 with an extended voltage of 1.6 V, along with outstanding long-term cycling stability that retains 93.9% of the initial capacity after 10?000 cycles. To the best of our knowledge, the Ni3Se2 NWs@NF//AC HSC developed in this work demonstrates the best capacity performance among the reported HSCs with nickel selenides as electrode materials in aqueous electrolytes. Our results manifest that the Ni3Se2 NWs@NF is a promising electrode material for high-performance HSCs. This journal is © the Partner Organisations.

Keyword :

Electrodes Electrolytes Electron transport properties Energy storage Nickel compounds Potassium hydroxide Selenium compounds Supercapacitor

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Wei , Chen, Tianqi , Li, Ao et al. High energy density hybrid supercapacitors derived from novel Ni3Se2nanowires: In situ constructed on porous nickel foam [J]. | Inorganic Chemistry Frontiers , 2021 , 8 (4) : 1093-1101 .
MLA Li, Wei et al. "High energy density hybrid supercapacitors derived from novel Ni3Se2nanowires: In situ constructed on porous nickel foam" . | Inorganic Chemistry Frontiers 8 . 4 (2021) : 1093-1101 .
APA Li, Wei , Chen, Tianqi , Li, Ao , Shi, Peng , Wu, Ming , Li, Tingting et al. High energy density hybrid supercapacitors derived from novel Ni3Se2nanowires: In situ constructed on porous nickel foam . | Inorganic Chemistry Frontiers , 2021 , 8 (4) , 1093-1101 .
Export to NoteExpress RIS BibTex
Colossal Reversible Barocaloric Effects in Layered Hybrid Perovskite (C10H21NH3)(2)MnCl4 under Low Pressure Near Room Temperature EI SCIE
期刊论文 | 2021 , 31 (46) | ADVANCED FUNCTIONAL MATERIALS
Abstract&Keyword Cite

Abstract :

Barocaloric effects in a layered hybrid organic-inorganic compound, (C10H21NH3)(2)MnCl4, that are reversible and colossal under pressure changes below 0.1 GPa are reported. This barocaloric performance originates in a phase transition characterized by different features: A strong disordering of the organic chains, a very large volume change, a very large sensitivity of the transition temperature to pressure and a small hysteresis. The obtained values are unprecedented among solid-state cooling materials at such low pressure changes and demonstrate that colossal effects can be obtained in compounds other than plastic crystals. The temperature-pressure phase diagram displays a triple point indicating enantiotropy at high pressure.

Keyword :

barocaloric effects calorimetry hybrid layered perovskites phase diagrams Raman scattering

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Junning , Barrio, Maria , Dunstan, David J. et al. Colossal Reversible Barocaloric Effects in Layered Hybrid Perovskite (C10H21NH3)(2)MnCl4 under Low Pressure Near Room Temperature [J]. | ADVANCED FUNCTIONAL MATERIALS , 2021 , 31 (46) .
MLA Li, Junning et al. "Colossal Reversible Barocaloric Effects in Layered Hybrid Perovskite (C10H21NH3)(2)MnCl4 under Low Pressure Near Room Temperature" . | ADVANCED FUNCTIONAL MATERIALS 31 . 46 (2021) .
APA Li, Junning , Barrio, Maria , Dunstan, David J. , Dixey, Richard , Lou, Xiaojie , Tamarit, Josep-Lluis et al. Colossal Reversible Barocaloric Effects in Layered Hybrid Perovskite (C10H21NH3)(2)MnCl4 under Low Pressure Near Room Temperature . | ADVANCED FUNCTIONAL MATERIALS , 2021 , 31 (46) .
Export to NoteExpress RIS BibTex
Multifunctionality in (K,Na)NbO3-based ceramic near polymorphic phase boundary EI SCIE
期刊论文 | 2021 , 130 (6) | JOURNAL OF APPLIED PHYSICS
Abstract&Keyword Cite

Abstract :

The 0.95K(0.42)Na(0.58)Nb(0.96)Sb(0.04)O(3)-0.02BaZrO(3)-0.03Bi(0.5)K(0.5)HfO(3) ceramic was fabricated via a conventional solid-state reaction. This ceramic exhibits the diffuse polymorphic phase boundary (PPB) near room temperature. The dielectric, ferroelectric, electromechanical, electrocaloric, and dielectric energy storage properties were studied systemically. The normalized large signal d(33)* values are approximately 400-600 pm/V at measured temperatures and electric fields, which are larger than or comparable with the values reported in other lead-free compositions. The electrocaloric strength is enhanced at the broad region of PPB provided by the indirect and direct measurements. At low field of 30 kV/cm, the dielectric energy storage is similar to 0.12-018 J/cm(3) at relative broad temperature range due to the diffuse nature of polymorphic phase boundary. Theoretical simulations reveal that multi-element dopants, such as Sb5+, Hf4+, Zr4+, and Bi3+ ions, could induce the breaking of local structure symmetry in the orthorhombic phase to form the PPB. In addition, the charge distribution may also break the long-range ferroelectric order through the analysis of Bader charge. Our study suggests that the K0.5Na0.5NbO3-based ceramic exhibits improved performance and good thermal stability in piezoelectric, electrocaloric, and dielectric energy storage characteristics in terms of the design of multi-element dopants to form the PPB and it will benefit the promising applications in electronic devices.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Xiangjian , Lou, Xiaojie , Geng, Wenping et al. Multifunctionality in (K,Na)NbO3-based ceramic near polymorphic phase boundary [J]. | JOURNAL OF APPLIED PHYSICS , 2021 , 130 (6) .
MLA Wang, Xiangjian et al. "Multifunctionality in (K,Na)NbO3-based ceramic near polymorphic phase boundary" . | JOURNAL OF APPLIED PHYSICS 130 . 6 (2021) .
APA Wang, Xiangjian , Lou, Xiaojie , Geng, Wenping , Yao, Yingbang , Tao, Tao , Liang, Bo et al. Multifunctionality in (K,Na)NbO3-based ceramic near polymorphic phase boundary . | JOURNAL OF APPLIED PHYSICS , 2021 , 130 (6) .
Export to NoteExpress RIS BibTex
Doping-induced Polar Defects Improve the Electrocaloric Performance of Ba0(0.9)Sr(0.1)Hf(0.1)Ti(0.9)O(3) EI SCIE
期刊论文 | 2021 , 16 (1) | PHYSICAL REVIEW APPLIED
WoS CC Cited Count: 2
Abstract&Keyword Cite

Abstract :

In materials science, intentional doping has been widely used to improve the properties of a variety of materials. However, such an approach is not yet exploited in the fast-growing field of electrocaloric materials, which represent a serious alternative for next-generation cooling systems. Here we demonstrate with Ba0.9Sr0.1Hf0.1Ti0.9O3, an ecofriendly ferroelectric material, that doping with 2% of Cu introduces defect dipoles into the ferroelectric matrix and results in (i) enhancement of the adiabatic temperature change AT by up to 54% while maintaining performance after a large number (up to 104) of electric field cycles, (ii) suppression of the parasitic irreversibility of AT between on-field and off -field states, and (iii) an alternative design of refrigeration cycle with a prepoled sample, allowing a two-field-step process showing both conventional (AT> 0) and inverse (AT< 0) responses when the field is sequentially varied. We also demonstrate that doping significantly increases the energy storage density (by up to 72%). The defect engineering approach therefore offers a path for designing ferroelectrics with improved electrocaloric performances. Beyond ferroelectrics, this strategy could also be promising in other solid-state caloric materials (magnetocalorics, elastocalorics, etc.).

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Junning , Lv, Jing , Zhang, Dawei et al. Doping-induced Polar Defects Improve the Electrocaloric Performance of Ba0(0.9)Sr(0.1)Hf(0.1)Ti(0.9)O(3) [J]. | PHYSICAL REVIEW APPLIED , 2021 , 16 (1) .
MLA Li, Junning et al. "Doping-induced Polar Defects Improve the Electrocaloric Performance of Ba0(0.9)Sr(0.1)Hf(0.1)Ti(0.9)O(3)" . | PHYSICAL REVIEW APPLIED 16 . 1 (2021) .
APA Li, Junning , Lv, Jing , Zhang, Dawei , Zhang, Lixue , Hao, Xihong , Wu, Ming et al. Doping-induced Polar Defects Improve the Electrocaloric Performance of Ba0(0.9)Sr(0.1)Hf(0.1)Ti(0.9)O(3) . | PHYSICAL REVIEW APPLIED , 2021 , 16 (1) .
Export to NoteExpress RIS BibTex
Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity EI SCIE
期刊论文 | 2021 , 495 | Journal of Power Sources
WoS CC Cited Count: 2
Abstract&Keyword Cite

Abstract :

Supercapacitors (SCs) have attracted considerable attention due to their outstanding power density and cycling performance. In this work, the amino-rich surface functional groups (–NH– and –N+H-) surface modified Ti3C2Tx MXene nanosheets (N–Ti3C2Tx-200) are synthesized via the solvothermal method, which is accompanied by the generation of surface titanium atom defects. Moreover, kinetic analysis confirms that the surface amino-rich functional groups are in favor of the rapid hydrogen ions transmission within electrode, leading to an enhancement of capacitive capacitance. Specifically, the flexible N–Ti3C2Tx-200 electrode exhibits a volumetric capacity of 936.0 C cm−3, which is 1.49 times that of the pristine Ti3C2Tx. Further, the modified electrode even can keep a volumetric capacity of 839.7 C cm−3 at 1 V s−1, which is much higher than that of the pristine Ti3C2Tx (277.7 C cm−3). More importantly, the hybrid aqueous proton supercapacitors (HAPSs), constructed by N–Ti3C2Tx-200 anode and copper hexacyanoferrate (CuHCF) cathode, achieve a 2 V wide voltage window and an ultrahigh volumetric energy density of 104.9 Wh L−1 at 0.38 kW L−1. This work offers a basic understanding of the amino-rich surface-modified flexible Ti3C2Tx film electrodes with high volumetric energy density and high-rate performance, providing a strategy to fabricate HAPSs with superior volumetric capacity. © 2021 Elsevier B.V.

Keyword :

Anodes Capacitance Copper compounds Nanosheets Supercapacitor Surface treatment

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Tian, Yapeng , Que, Bowen , Luo, Yangyang et al. Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity [J]. | Journal of Power Sources , 2021 , 495 .
MLA Tian, Yapeng et al. "Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity" . | Journal of Power Sources 495 (2021) .
APA Tian, Yapeng , Que, Bowen , Luo, Yangyang , Ju, Maomao , Tang, Yi , Lou, Xiaojie et al. Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity . | Journal of Power Sources , 2021 , 495 .
Export to NoteExpress RIS BibTex
Extraordinary energy storage performance and thermal stability in sodium niobate-based ceramics modified by the ion disorder and stabilized antiferroelectric orthorhombic R phase EI SCIE
期刊论文 | 2021 , 9 (43) , 24387-24396 | JOURNAL OF MATERIALS CHEMISTRY A
Abstract&Keyword Cite

Abstract :

Developing high-performance dielectric capacitors is essential to meet the growing demands of hybrid electric vehicles and high-power applications. The energy storage efficiency and the temperature-variant energy storage properties should be considered besides the energy density. In this work, we prepared (1 - x)(0.8NaNbO(3)-0.2SrTiO(3)) - xBi(Zn0.5Sn0.5)O-3 (abbreviated as (1 - x)(NN-ST) - xBZS) lead-free ceramics, where ion disorder is induced in the A-B sites. The experimental results indicate that the antiferroelectric orthorhombic R phase is stabilized, and the breakdown strength is enhanced due to the decreased grain size after BZS modification, which are conducive to optimizing the energy storage performance. The piezoresponse force microscopy (PFM) observation reveals that the incorporated BZS promotes the reversibility of domains, resulting in enhanced energy storage efficiency. Therefore, an energy density of 5.82 J cm(-3) and an efficiency of 92.3% are simultaneously obtained in the 0.96(NN-ST) - 0.04BZS composition, and the obtained efficiency in this work reaches a record high in NN-based energy storage ceramics. Especially, the sample displays extraordinary temperature stability, that is, high energy storage density (3.6-4.31 J cm(-3)) and efficiency (90-95%) are achieved in a wide temperature range from -60 degrees C to 180 degrees C. Our work would provide a powerful strategy for designing high-performance energy storage capacitors operating in harsh environments.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Kang, Ruirui , Wang, Zepeng , Yang, Weijie et al. Extraordinary energy storage performance and thermal stability in sodium niobate-based ceramics modified by the ion disorder and stabilized antiferroelectric orthorhombic R phase [J]. | JOURNAL OF MATERIALS CHEMISTRY A , 2021 , 9 (43) : 24387-24396 .
MLA Kang, Ruirui et al. "Extraordinary energy storage performance and thermal stability in sodium niobate-based ceramics modified by the ion disorder and stabilized antiferroelectric orthorhombic R phase" . | JOURNAL OF MATERIALS CHEMISTRY A 9 . 43 (2021) : 24387-24396 .
APA Kang, Ruirui , Wang, Zepeng , Yang, Weijie , Zhu, Xiaopei , Shi, Peng , Gao, Yangfei et al. Extraordinary energy storage performance and thermal stability in sodium niobate-based ceramics modified by the ion disorder and stabilized antiferroelectric orthorhombic R phase . | JOURNAL OF MATERIALS CHEMISTRY A , 2021 , 9 (43) , 24387-24396 .
Export to NoteExpress RIS BibTex
Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics EI SCIE
期刊论文 | 2021 , 47 (1) , 1101-1108 | Ceramics International
WoS CC Cited Count: 4
Abstract&Keyword Cite

Abstract :

In this work, the electrocaloric (EC) effect was studied in the (100-x)BaHf0.2Ti0.8O3-xBa0.94Sm0.04TiO3 (BHT-xBST) ceramics fabricated by the conventional solid-reaction method. By tuning composition to their diffuse phase transition (DPT), invariant critical point (ICP) and first-order phase transition (FPT), the large electrocaloric response with a temperature change of ΔT = 0.46 °C (at 64 °C) under 30 kV/cm and an electrocaloric strength of ΔT/ΔE = 0.18 K mm/kV under 12 kV/cm were achieved in BHT-70BST. In addition, BHT-50BST shows a broad EC working temperature window from 28 °C to 68 °C because of its diffusion behavior near the ferroelectric-to-paraelectric phase transition and multiphase coexistence. The maximum ΔT of BHT-50BST is larger than that of BHT-40BST with only diffusion character but no multiphase coexistence. This work may provide a design strategy to enhance EC performance with a broad working temperature region in lead-free rare-earth doped BaTiO3-based ceramics by combining the diffusion behavior, multiphase coexistence and heterovalent substitution. © 2020 Elsevier Ltd and Techna Group S.r.l.

Keyword :

Barium titanate Diffusion Hafnium Rare earths Samarium

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhang, Boyang , Lou, Xiaojie , Zheng, Kun et al. Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics [J]. | Ceramics International , 2021 , 47 (1) : 1101-1108 .
MLA Zhang, Boyang et al. "Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics" . | Ceramics International 47 . 1 (2021) : 1101-1108 .
APA Zhang, Boyang , Lou, Xiaojie , Zheng, Kun , Xie, Xuefan , Shi, Peng , Guo, Mengyao et al. Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics . | Ceramics International , 2021 , 47 (1) , 1101-1108 .
Export to NoteExpress RIS BibTex
Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning EI SCIE
期刊论文 | 2021 , 420 | CHEMICAL ENGINEERING JOURNAL
WoS CC Cited Count: 11
Abstract&Keyword Cite

Abstract :

The application of dielectric capacitors with high energy density is very important to solve the increasingly serious energy crisis. However, the further improvement of energy density is seriously confining by their poor breakdown fields. In this work, outstanding energy storage performance is achieved in Sr0.7BixTiO3 (x = 0.1, 0.2, 0.3 and 0.4) ceramics via A-site defect and grain size tuning. It was found that the moderate Bi3+ content is helpful to reduce sintering temperature and refine grain size, which lead to higher activation energy and breakdown field. Besides, moderate Bi3+ doping in A-site enhances polarity owing to the hybridizations between 6p orbital of Bi and 2p orbital of O. Thus, a high recoverable energy density of 4.77 J/cm(3) with prominent efficiency of 85.7% at 570 kV/cm is realized in Sr0.7Bi0.2TiO3 ceramic. Moreover, the Sr0.7Bi0.2TiO3 ceramic also displays superior thermal stability from 20 degrees C to 160 degrees C and excellent fatigue endurance over 10(5) cycles. Our results in this work offer a better understanding and design methodology for developing novel high-performance dielectric capacitors.

Keyword :

Dielectric capacitors Grain size engineering Recoverable energy density Sr0.7BixTiO3 ceramics

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhu, Xiaopei , Shi, Peng , Kang, Ruirui et al. Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning [J]. | CHEMICAL ENGINEERING JOURNAL , 2021 , 420 .
MLA Zhu, Xiaopei et al. "Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning" . | CHEMICAL ENGINEERING JOURNAL 420 (2021) .
APA Zhu, Xiaopei , Shi, Peng , Kang, Ruirui , Li, Siyi , Wang, Zepeng , Qiao, Wenjing et al. Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning . | CHEMICAL ENGINEERING JOURNAL , 2021 , 420 .
Export to NoteExpress RIS BibTex
Large electric-field-induced strain and energy storage properties in Bi0.5Na0.5TiO3-(0.5Ba0.7Ca0.3TiO3-0.5BaTi0.8Zr0.2O3) lead-free relaxor ferroelectric ceramics EI SCIE
期刊论文 | 2021 , 860 | Journal of Alloys and Compounds
WoS CC Cited Count: 9
Abstract&Keyword Cite

Abstract :

Piezoelectric ceramics with high strain can convert electrical energy and mechanical energy into each other for a wide range of applications. (1-x)Bi0.5Na0.5TiO3-x(0.5Ba0.7Ca0.3TiO3-0.5BaTi0.8Zr0.2O3) (BNT-x(BCT-BZT)) lead-free piezoelectric ceramics were prepared through solid-state reaction methods. The structural, dielectric, field-induced strain and energy storage properties of the ceramics were investigated systematically by various characterization techniques. A large field-induced strain of 0.42% with negligible negative strain and large reverse piezoelectric coefficient of 547 pm/V are obtained in BNT-9(BCT-BZT) ceramics. A large recoverable energy storage of 3.49 J/cm3 under 360 kV/cm and high energy storage efficiency of 64.9% are achieved in the BNT-10(BCT-BZT) ceramics. It believes that the large strain with negligible negative strain is mainly due to the crossover of relaxor nonpolar state to ferroelectric polar state. We believe that the BNT-x(BCT-BZT) ceramics are favorable for the practical applications in the mobile electronic devices. © 2020 Elsevier B.V.

Keyword :

Energy storage Ferroelectric ceramics Ferroelectricity Ferroelectric materials Piezoelectric ceramics Piezoelectricity Solid state reactions

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Shi, Peng , Li, Tangyuan , Lou, Xiaojie et al. Large electric-field-induced strain and energy storage properties in Bi0.5Na0.5TiO3-(0.5Ba0.7Ca0.3TiO3-0.5BaTi0.8Zr0.2O3) lead-free relaxor ferroelectric ceramics [J]. | Journal of Alloys and Compounds , 2021 , 860 .
MLA Shi, Peng et al. "Large electric-field-induced strain and energy storage properties in Bi0.5Na0.5TiO3-(0.5Ba0.7Ca0.3TiO3-0.5BaTi0.8Zr0.2O3) lead-free relaxor ferroelectric ceramics" . | Journal of Alloys and Compounds 860 (2021) .
APA Shi, Peng , Li, Tangyuan , Lou, Xiaojie , Yu, Zhonghai , Zhu, Xiaopei , Zhou, Chao et al. Large electric-field-induced strain and energy storage properties in Bi0.5Na0.5TiO3-(0.5Ba0.7Ca0.3TiO3-0.5BaTi0.8Zr0.2O3) lead-free relaxor ferroelectric ceramics . | Journal of Alloys and Compounds , 2021 , 860 .
Export to NoteExpress RIS BibTex
Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation EI SCIE
期刊论文 | 2021 , 416 | Chemical Engineering Journal
WoS CC Cited Count: 16
Abstract&Keyword Cite

Abstract :

Ferroelectric materials have multiple characteristics in ferroelectric, piezoelectric, pyroelectric properties, which provide an attractive prospect for simultaneously harvesting multiple energy sources for catalytic applications. However, the crucial challenge for wastewater purification lies in the development of ferroelectric materials with improved functions and the design of advanced oxidation processes. Herein, Sr0.3Ba0.7TiO3 (SBT-0.3) nano-catalysts modified by PVP surfactant could significantly promote water recovery efficiency from the rhodamine B (RhB), which is as high as 98% by simultaneously collecting two types of energy sources of mechanical friction and temperature fluctuation from the natural environment for tribo-/pyro-catalysis under dark conditions. It was found that the samples containing PVP surfactant show significantly improved performance in the separation of charge carriers in comparison with those without PVP surfactant. The permanent polarization in SBT-0.3, coupled with the piezo-/pyro-potential, could generate internal field and therefore reduce charge recombination. It also helps to absorb charged species from the dye solution, which favors the reaction with active oxygen to cause the cleavage and breakdown of organic molecules. The mechanism of RhB decomposition mediated by SBT-0.3 ferroelectric is also discussed. This work favors us to in-depth understanding for the tribo-/pyro-catalysis and hence proposes a new strategy to improve the water purification efficiency of ferroelectric nanocrystals. © 2021 Elsevier B.V.

Keyword :

Barium titanate Carrier mobility Collector efficiency Ferroelectricity Ferroelectric materials Ionization of gases Nanocatalysts Nanocrystals Purification Rhodamine B Rhodium compounds Strontium compounds Surface active agents

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yang, Bian , Chen, Haobin , Yang, Yaodong et al. Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation [J]. | Chemical Engineering Journal , 2021 , 416 .
MLA Yang, Bian et al. "Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation" . | Chemical Engineering Journal 416 (2021) .
APA Yang, Bian , Chen, Haobin , Yang, Yaodong , Wang, Lei , Bian, Jihong , Liu, Qida et al. Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation . | Chemical Engineering Journal , 2021 , 416 .
Export to NoteExpress RIS BibTex
10| 20| 50 per page
< Page ,Total 15 >

Export

Results:

Selected

to

Format:
FAQ| About| Online/Total:504/161878654
Address:XI'AN JIAOTONG UNIVERSITY LIBRARY(No.28, Xianning West Road, Xi'an, Shaanxi Post Code:710049) Contact Us:029-82667865
Copyright:XI'AN JIAOTONG UNIVERSITY LIBRARY Technical Support:Beijing Aegean Software Co., Ltd.