Indexed by:
Abstract:
Development of photocatalytic systems for scalable and inexpensive solar hydrogen (H2) requires non-noble-metal cocatalysts. Integration of Fe3C with 1D metal sulfide photo-absorber highly improved the activity and durability of photocatalytic H2 evolution. Consequently, the enhanced hydrogen evolution rate of 195 μmol h−1 was achieved which is 15 times higher than that of pure CdS NRs. The apparent quantum yield was approached to 11.5 % under monochromatic 420 nm light. On the other hand, photocorrosion of the photosensitizer was hampered and the system demonstrated robust stability of 22 h under visible light. Moreover, Fe3C showcased high current density with low overpotential for electrocatalytic HER, proving it feasible for H2 evolution. The role of Fe3C was comprehensively studied using electrochemical studies, BET surface area, PL and TRPL spectroscopy. This work demonstrated the exceptional potential of Fe3C/CdS NRs as a promising inexpensive photocatalyst with high activity and stability for H2 production under visible light. © 2020 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Applied Catalysis A: General
ISSN: 0926-860X
Year: 2020
Volume: 603
5 . 7 0 6
JCR@2020
5 . 7 0 6
JCR@2020
ESI Discipline: CHEMISTRY;
ESI HC Threshold:70
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 17
SCOPUS Cited Count: 56
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: