Indexed by:
Abstract:
The condition monitoring of rolling element bearings (REBs) is essential to maintain the reliable operation of rotating machinery, and the difficulty lies in how to estimate fault information from the raw signal that is always overwhelmed by severe background noise and other interferences. The method based on a sparse model has attracted increasing attention because it can capture deep-level fault features. However, when processing a signal with complex components and weak fault features, the performance of sparse model-based methods is often not ideal. In this work, the fault information-based sparse low-rank algorithm (FISLRA) is proposed to abstract the fault information from a noisy signal interfered with by background noise and external interference. Concretely, a sparse and low-rank model is formulated in the time-frequency domain. Then, a fast-converging algorithm is derived based on the alternating direction method of multipliers (ADMM) to solve the formulated model. Moreover, to further highlight the periodical transients, a correlated kurtosis-based thresholding (CKT) scheme proposed in this paper is also incorporated to solve the proposed low-rank spares model. The superiority of the proposed FISLRA over the traditional sparse low-rank model (TSLRM) and spectral kurtosis (SK) is proved by simulation analysis. In addition, two experimental signals collected from a bearing test rig are utilized to demonstrate the efficiency of the proposed FISLRA in fault detection. The results illustrate that compared to the TSLRM method, FISLRA can effectively extract periodical fault transients even when harmonic components (HCs) are present in the noisy signal.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED SCIENCES-BASEL
Year: 2020
Issue: 7
Volume: 10
2 . 6 7 9
JCR@2020
2 . 6 7 9
JCR@2020
ESI Discipline: ENGINEERING;
ESI HC Threshold:59
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: