Indexed by:
Abstract:
Vibration analysis has been proved to be an effective and powerful tool for the condition monitoring and fault diagnosis of rolling bearings. During the past decades, the conventional envelope analysis has been one of the main approaches in vibration signal processing. However, the envelope analysis is based on stationary assumption, thus it is not applicable to the fault diagnosis of bearings under rotating speed variation conditions. This constraint limits the bearing diagnosis in industrial applications. In recent years, order tracking methods based on time-frequency representation have been proposed for bearing fault detection under speed variation operating conditions. However, the methods are only applicable for offline bearing fault detection. Aiming at the shortcomings of the current tacholess order tracking techniques, an online tacholess order tracking method is proposed in this paper. The proposed method is on the basis of extracting the instantaneous tachometer information from the collected vibration signal itself continuously, and resampling the original signal with equal angle increment. The envelope order spectrum is used for bearing fault identification. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals. (C) 2015 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF SOUND AND VIBRATION
ISSN: 0022-460X
Year: 2016
Volume: 367
Page: 233-249
2 . 5 9 3
JCR@2016
3 . 4 2 9
JCR@2019
ESI Discipline: ENGINEERING;
ESI HC Threshold:128
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 60
SCOPUS Cited Count: 99
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7