Indexed by:
Abstract:
Large and sensitive magnetostriction (large strain induced by small magnetic fields) is highly desired for applications of magnetostrictive materials. However, it is difficult to simultaneously improve magnetostriction and reduce the switching field because magnetostriction and the switching field are both proportional to the magnetocrystalline anisotropy. To solve this fundamental challenge, we report that introducing tetragonal nanoprecipitates into a cubic matrix can facilitate large and sensitive magnetostriction even in random polycrystals. As exhibited in a proof-of-principle reference, Fe–Ga alloys, the figure of merit—defined by the saturation magnetostriction over the magnetocrystalline anisotropy constant—can be enhanced by over 5-fold through optimum aging of the solution-treated precursor. On the one hand, the aging-induced nanodispersive face-centered tetragonal (FCT) precipitates create local tetragonal distortion of the body-centered cubic (BCC) matrix, substantially enhancing the saturation magnetostriction to be comparable to that of single crystal materials. On the other hand, these precipitates randomly couple with the matrix at the nanoscale, resulting in the collapse of net magnetocrystalline anisotropy. Our findings not only provide a simple and feasible approach to enhance the magnetostriction performance of random polycrystalline ferromagnets but also provide important insights toward understanding the mechanism of heterogeneous magnetostriction. © 2021, The Author(s).
Keyword:
Reprint Author's Address:
Source :
NPG Asia Materials
ISSN: 1884-4049
Year: 2021
Issue: 1
Volume: 13
1 0 . 4 8 1
JCR@2020
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:36
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 44
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: