Indexed by:
Abstract:
Polymer-based dielectrics with high thermal conductivity and superb dielectric properties hold great promising for advanced electronic packaging and thermal management application. However, integrating these properties into a single material remains challenging due to their mutually exclusive physical connotations. Here, an ideal dielectric thermally conductive epoxy composite is successfully prepared by incorporating multiscale hybrid fillers of boron nitride microsphere (BNMS) and silicon dioxide coated silicon carbide nanoparticles (SiC@SiO2). In the resultant composites, the microscale BNMS serve as the principal building blocks to establish the thermally conductive network, while the nanoscale SiC@SiO2 as bridges to optimize the heat transfer and suppress the interfacial phonon scattering. In addition, the special core–shell nanoarchitecture of SiC@SiO2 can significantly impede the leakage current and generate a great deal of minicapacitors in the composites. Consequently, favorable thermal conductivity (0.76 W/mK) and dielectric constant (∼8.19) are simultaneously achieved in the BNMS/SiC@SiO2/Epoxy composites without compromising the dielectric loss (∼0.022). The strategy described in this study provides important insights into the design of high-performance dielectric composites by capitalizing on the merits of different particles. © 2022 Elsevier Inc.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Colloid and Interface Science
ISSN: 0021-9797
Year: 2022
Volume: 627
Page: 205-214
8 . 1 2 8
JCR@2020
ESI Discipline: CHEMISTRY;
ESI HC Threshold:6
Cited Count:
SCOPUS Cited Count: 53
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: