Indexed by:
Abstract:
Additive manufacturing of directionally solidified Ni-based superalloys faces at least two critical obstacles, namely, the formation of stray equiaxed grains and the susceptibility to cracking; circumventing both of these simultaneously is considered difficult. In this study, a comparative study of a non-weldable superalloy IN738 fabricated through the laser directed energy deposition (DED) without preheating the base plate and the electron beam powder bed fusion (EB-PBF) with preheating up to the upper bound of ductility dip temperature range was performed. With appropriate process parameters, a steep and unidirectional temperature gradient, a sufficiently high cooling rate at the liquid/solid interface, and a relatively low cooling rate at the γ′ solvus are obtained simultaneously in the EB-PBF process. The prevalence of these conditions results in the growth of well-aligned columnar dendrites, mitigates the elemental segregation, reduces the built-in microscopic defects, and lowers the stored deformation energy. Consequently, cracking is successfully prevented and reasonable room temperature tensile properties are achieved in the as-printed EB-PBF product. Moreover, recrystallization is not triggered during the post-printing heat treatment, and thus the fiber texture is preserved. This study provides a detailed understanding of the critical factors that need to overcome for producing directionally solidified superalloys through additive manufacturing. © 2022 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Additive Manufacturing
Year: 2022
Volume: 59
1 0 . 9 9 8
JCR@2020
Cited Count:
SCOPUS Cited Count: 30
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5