Indexed by:
Abstract:
Selective Catalytic Reduction as an efficient technology to reduce NOx emission has been widely applied in exhaust aftertreatment system. However, the reductant injection causes inevitable impingement on the exhaust pipe and mixer surface and the liquid film will be generated. In this paper, the simulation of a double-blade mixer (Mixer 1) is verified by a bench test and other three kinds of mixer structures (baffle mixer: Mixer 2, blade-baffle mixer: Mixer 3, and blade mixer: Mixer 4) are simulated. The effect of the mixer structures on the liquid film formation, the pressure drop, the flow and temperature distribution after the mixers and ultimately the NOx conversion efficiency are investigated. Results show that the liquid film is prone to form and accumulate at the connection region between the mixer and exhaust pipe, and liquid film tends to develop with the flow direction. Mixer 2 and Mixer 4 shows smaller liquid film area about 15 cm2. The temperature distribution in four types of mixers shows negligible difference (within 4 °C). And NH3 mass fraction distribution uniformity and pressure drop show a trade-off relationship. For the vertical injection system, it is found Mixer 3 gets the worst NOx conversion efficiency, 57%, and Mixer 2 shows better NOx conversion efficiency, 78%. © 2022
Keyword:
Reprint Author's Address:
Email:
Source :
Fuel
ISSN: 0016-2361
Year: 2022
Volume: 330
6 . 6 0 9
JCR@2020
ESI Discipline: ENGINEERING;
ESI HC Threshold:7
Cited Count:
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: