Indexed by:
Abstract:
C5F10O-insulated environmental-friendly power equipment has great potential to be used in the near future to reduce greenhouse effect. During maintenance, C5F10O should be supplemented or replaced, and the released gas is promisingly to be removed by advanced oxidation processes, but chemical kinetics of C5F10O with the most reactive and dominant species center dot OH radical in air plasma is still not clear. Therefore, this paper studied the degradation pathways and rate constants of C5F10O + center dot OH in both gaseous and aqueous phases with M06-2X/6-31G* method and transition state theory. A continuum solvation model was also employed to study the influence of solvent on chemical kinetics of C5F10O + center dot OH. The results show that most reactions (except for R7 and R8) in both phases have a similar transition state vibration mode leading to same products but rate constants are different. The rate constants of reactions R5 and S5 are highest in corresponding states, respectively, playing a dominant role in the degradation of C5F10O + center dot OH, but the rate constant of reaction S5 is much lower indicating that AOP treatment for C5F10O in gas phase is more effective. This work lays a theoretical basis for plasma modeling and experimental investigation for C5F10O degradation by advanced oxidation process.
Keyword:
Reprint Author's Address:
Source :
PLASMA CHEMISTRY AND PLASMA PROCESSING
ISSN: 0272-4324
Year: 2022
Issue: 6
Volume: 42
Page: 1265-1278
3 . 1 4 8
JCR@2020
ESI Discipline: CHEMISTRY;
ESI HC Threshold:6
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: