Indexed by:
Abstract:
The adsorption of iodine anions (iodide and iodate) on the sulfur terminated (001) chalcopyrite surface has been systematically investigated combining first-principles calculations based on density functional theory (DFT) with X-ray photoelectron spectroscopy (XPS) measurements. Based on the total energy calculations and geometric optimization, the thermodynamically preferred site was copper atom for iodide adsorption and iron atom for iodate adsorption, respectively. In the case of Cu site mode, the iodate underwent a dissociative adsorption, where one I-O bond of iodate ion was broken and the dissociative oxygen atom adsorbed on the adjacent sulphur site. Projected density of states (PDOS) analysis further clarified the interaction mechanism between active sites of chalcopyrite surface and adsorbates. In addition, full-range XPS spectra qualitatively revealed the presence of iodine on chalcopyrite surface. High resolution XPS spectra of the I 3d peaks after adsorption verified the chemical environment of iodine. The binding energies of 618.8 eV and 623.5 eV for I 3d(5/2) peaks unveiled that the adsorption of iodide and iodate ions on copper-iron sulfide minerals was the result of formation of low solubility metal iodides precipitate. Also two I 3d peaks with low intensity around 618 eV and 630 eV might be related to the inorganic reduction of iodate to iodide by reducing S2- ion of chalcopyrite. (C) 2016 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED SURFACE SCIENCE
ISSN: 0169-4332
Year: 2016
Volume: 390
Page: 412-421
3 . 3 8 7
JCR@2016
6 . 7 0 7
JCR@2020
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:239
JCR Journal Grade:2
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 53
SCOPUS Cited Count: 78
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12