Indexed by:
Abstract:
Due to the outstanding material properties, silicon carbide (SiC) power device is the most promising alternative to silicon devices and can work at higher junction temperature. However, existing packaging technologies obstruct the use of SiC devices at high temperature and impede the continued exploration of SiC devices in high-temperature applications. This article proposes a novel hermetic metal packaging method called compact-interleaved package. The compact-interleaved power module handles the mentioned problems from three key considerations: packaging parasitic parameters, direct electrode measurement structure, and packaging materials. Based on the elaborate high-temperature double pulse test platform, dynamic characteristics of 1.2-kV/13-mΩ 4H-SiC power mosfet are studied under the condition of extremely high junction temperature (up to 550 °C) and extremely high switching speed (about 3 kA/μs). The dynamic characteristics of SiC mosfet are theoretically analyzed and verified by experimental measurements. Compared with other SiC bipolar devices, SiC mosfet maintains outstanding dynamic characteristics at extremely high temperatures and has an optimal operating high-temperature range. Finally, this article demonstrates an extreme-high-temperature power electronic converter to verify the superiority of the packaging method, and also proves the extreme-high-temperature power converting capability of SiC mosfet. © 1986-2012 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE Transactions on Power Electronics
ISSN: 0885-8993
Year: 2023
Issue: 1
Volume: 38
Page: 417-434
6 . 1 5 3
JCR@2020
ESI Discipline: ENGINEERING;
Cited Count:
SCOPUS Cited Count: 21
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: